Feature Extraction and Prediction of Water Quality Based on Candlestick Theory and Deep Learning Methods

نویسندگان

چکیده

In environmental hydrodynamics, a research topic that has gained popularity is the transmission and diffusion of water pollutants. Various types change processes in hydrological quality are directly related to meteorological changes. If these changing characteristics classified effectively, this will be conducive application deep learning theory pollution simulation. When periodically monitoring quality, data were represented with candlestick chart, different classification features displayed. The from area 2012 2019 generated 24 results line physics laws. Therefore, prediction method was proposed classify process improve accuracy based on theory, visual geometry group, gate recurrent unit (CT-VGG-GRU). method, after periodic changes by graphically, extracted VGG network its advantages graphic feature extraction. Then, other scenario parameters fused as input time series model, pollutant concentration sequence at predicted station constituted output model. Finally, hybrid model combining graphical formed, used continuous multiple stations Lijiang River watershed train validate Experimental indicated that, compared comparison models, such back propagation neural (BPNN), support vector regression (SVR), GRU, VGG-GRU, had highest accuracy, especially for extreme values. Additionally, trend closer real situation, which information could fully CT-VGG-GRU theory. For indicators DO, CODMn, NH3-N, mean absolute errors (MAE) 0.284, 0.113, 0.014, root square (RMSE) 0.315, 0.122, 0.016, symmetric percentage (SMAPE) 0.022, 0.108, 0.127, respectively. established achieved superior computational performance. Using river obtained effectively also retained, made more explanatory. can provide new prediction.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on the comparison of keyword and semantic-context methods of learning new vocabulary meaning

the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...

15 صفحه اول

effect of seed priming and irrigation regimes on yield,yield components and quality of safflowers cultivars

این مطالعه در سال 1386-87 در آزمایشگاه و مزرعه پژوهشی دانشگاه صنعتی اصفهان به منظور تعیین مناسب ترین تیمار بذری و ارزیابی اثر پرایمینگ بر روی سه رقم گلرنگ تحت سه رژیم آبیاری انجام گرفت. برخی از مطالعات اثرات سودمند پرایمینگ بذر را بر روی گیاهان مختلف بررسی کرده اند اما در حال حاضر اطلاعات کمی در مورد خصوصیات مربوط به جوانه زنی، مراحل نموی، عملکرد و خصوصیات کمی و کیفی بذور تیمار شده ژنوتیپ های م...

simulation and experimental studies for prediction mineral scale formation in oil field during mixing of injection and formation water

abstract: mineral scaling in oil and gas production equipment is one of the most important problem that occurs while water injection and it has been recognized to be a major operational problem. the incompatibility between injected and formation waters may result in inorganic scale precipitation in the equipment and reservoir and then reduction of oil production rate and water injection rate. ...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Water

سال: 2023

ISSN: ['2073-4441']

DOI: https://doi.org/10.3390/w15050845